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Numerical solutions of the three-dimensional equations for buoyancy -driven flows in 
cylinders with differentially heated endwalls have been obtained by a finite-difference 
method. Special attention has been devoted to the complex three-dimensional flow 
structures arising in horizontal cylinders for configurations relevant for crystal 
growth by vapour transport. The characterization of the transition between the 
core-driven regime and the boundary-layer-driven regime is considered with the 
properties of the main flow and also the transverse flow. 

1. Introduction 
The buoyancy-driven flows (natural convection) in cylinders with differentially 

heated endwalls (axial temperature gradient) is a topic of practical interest for many 
applications, particularly for materials processing. Crystallization from vapours 
(physical and chemical vapour transport) has gained ever increasing importance in 
the preparation of semi-conductors, insulators and metals. Rosenberger (1980) 
detailed the advantages of vapour growth over crystallization from melts as resulting 
mainly from the lower temperatures involved. For most of such applications the 
growth ampoules are circular cylinders with large aspect ratios (length/radius) which 
are placed in horizontal furnaces producing an axial temperature gradient. But some 
crystal-growth experiments are also done in a microgravity environment, and in this 
case the furnace axis can present an angle with the residual gravity vector. 

Horizontal cylinders, but with heating from the sidewalls, have been studied 
experimentally by Martini & Churchill (1960) and numerically by Leong & de Vahl 
Davis (1979) and Leong (1983). For the cylinders with differentially heated endwalls 
considered here, asymptotical theories have been proposed for large aspect ratios and 
small Rayleigh numbers (Klosse & Ullersma 1973; Gershuni & Zhukhovitskii 1976; 
Bejan & Tien 1978) which enabled the axial velocity component to be found, with 
an S-shaped profile in the vertical symmetry plane, as in differentially heated 
rectangular cavities (Bontoux et al. 1986). In  that case, the main motion corresponds 
to two horizontal counterflows moving from the hot wall above, and from the cold 
wall below. Computations were made by Hong (1977) and Kimura & Bejan (1980~) 
to determine the motion in the median (5  = +L) cross-section as a solution of 
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two-dimensional ( r ,  #)-equations. These last authors numerically confirmed the 
existence of the four secondary eddies situated in the four quadrants of the median 
cross-section and superimposed onto the main counterflows, as revealed by the 
asymptotical theory developed to  second order in Rak, by Bejan & Tien (1978). 
Experiments were carried out at large Ra (Kimura & Bejan 1980b). Recent velocity 
measurements from Schiroky & Rosenberger (1984) detailed the structure of the flow 
in the whole A = 10 cylinder over a wide range of Ra and exhibited fully three- 
dimensional patterns in the end region. I n  this study too, an extension to third order 
of the series expansion in Rak, given by Bejan & Tien (1978) was proposed. The 
validity limit of these asymptotical theories has been discussed in a previous paper 
by Bontoux et al. (1986). 

The present paper has three purposes. The first is related to the validity of the 
numerical approximation with respect to accurate and detailed experimental results 
(Schiroky 1982; Schiroky & Rosenberger 1984). The second is to give a detailed 
description of the three-dimensional flow field in the horizontal cylinder, some 
features in the symmetry plane and the end regions being shown in the experiments. 
The third is an extension of the analysis of the flow regimes (core-driven regime, 
boundary-layer-driven regime) discussed by Bontoux et al. (1986). Here the charac- 
terization of the regimes’ transition involves the properties of the transverse flow. 
The results concern vapour transport (Pr - 0.7) in a long cylinder ( A  = 10) and are 
given for several values of Ra relevant for vapour-growth experiments. 

The present numerical code is directly derived from the code CYL3D elaborated 
by Leong & de Vahl Davis (1979) and based on the AD1 method (Mallinson & de Vahl 
Davis 1973) with the vorticity-velocity formulation. But is has been carefully 
adapted for efficient use on a vector computer, not only to save computation time, 
but mainly to allow for the computation of the most severe flow configurations 
corresponding to the boundary-layer regime in long cylinders. 

2. Physical and mathematical models 
The cylindrical enclosure is defined by the radius R, the length L,  and the 

inclination y with respect to the gravity vector g. The aspect ratio is defined by 
A = L / R .  At a point ( T ,  #,Z) in the cylindrical reference frame, the velocity U has 
the components (U,@,W).  The cavity is differentially heated by the two isothermal 
endwalls (at X = 0 and Z = L )  with a total temperature difference of AT = Th- T,. 
The sidewalls (T = R )  are perfectly conducting. 

The mathematical model is given by the NavierStokes and energy equations with 
the simplified Boussinesq approximation (Joseph 1976). Using R and X/R as scaling 
factors for the length and the velocity respectively and cylindrical coordinates (see 
the figure I ) ,  the system is described by the vorticity c(&, &, &), the temperature 
8 = 2(T- %)/AT and the velocity Uas dependent variables, (Leong & de Vahl Davis 
1979; Leong 1983) : 

v x ( U X  = iBaPr(v x eg) +prv x (v x 0, ( 1 )  

v2 u = -v x c, (2) 

vque) = vv,  (3) 

where the Rayleigh number Ra is defined by the Grashof number, Gr = /3gATRs/v2 
and the Prandtl number Pr = v / x  as Ra = Gr Pr . g is the unity gravity vector and 
T, = i(q+T,).  
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FIQURE 1.  Geometry of the enclosure and frame of reference, with hot (Th) and cold (T,) 
circular walls. 

Specific scalings could be used when buoyancy terms balance either inertia terms 
(large Gr or small Pr) or viscous terms (small Gr or large Pr). In the present analysis, 
which considers moderate values of Gr and Pr, the ‘standard ’ scaling used by de Vahl 
Davis and co-workers (Mallinson & de Vahl Davis 1973, 1977; Mallinson, Graham 
& de Vahl Davis 1981), appeared to be a good compromise. 

The aspect ratio A, which appears in the boundary conditions, is not explicit in 
the system (1)-(3), because a common lengthscale R is used for r- and z-variables. 
The choice of Ra based on lengthscale R is particularly suitable for long cylinders, 
as shown by asymptotical laws (see $4). 

The vorticity-velocity formulation proposed by Fasel (1979) involves simpler 
boundary conditions for the three Poisson equations (2) on the three velocity 
components, compared to the vorticity-vector potential formulation. (It also requires 
less arrays.) For rigid walls the usual no slip conditions apply: u = v = w = 0. 

The boundary conditions for the vorticity on rigid walls are derived from these 
velocity conditions : 
at the endwalls (z = 0, A)  

at the sidewalls ( r  = 1) 

The thermal boundary conditions correspond to isothermal endwalls, 8 = & 1, and 
a linear temperature profile on the sidewalls, 8 = 1 - 2z /A.  

3. Solution method 
The method used has been elaborated by b o n g  & de Vahl Davis (1979). It consists 

of a centred finite-difference scheme with a uniform mesh composed of x A? x i? 
discretizing points in the (r,  $, 2)-directions. As proposed by de Vahl Davis (1979), 
there is no mesh point along the axis in order to avoid the problem of singularity. 
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The step size is Ar = (€-0.5)-, and the first mesh point is at iAr from the axis where 
second-order forward differences are used. The azimuth # = 0 is chosen to correspond 
to the half vertical plane below the axis (see figure 1). 

The Poisson equations (2) with Dirichlet conditions are solved with a Fourier solver 
(Le Bail 1972) which uses the FFT algorithm developed by Cooley & Tukey (1965). 

The AD1 scheme of Samarskii-Andreyev is used with a false transient technique 
for the transport equations (1) and (3) (see Mallinson & de Vahl Davis 1973; b o n g  
& de Vahl Davis 1979; Leong 1983). This scheme gives rise to tridiagonal algebraic 
systems which are solved by the Thomas algorithm. 

For steady-state solutions, the convergence is accelerated by using relaxation 
factors, respectively ac and uo, in the (false) transient terms of the transport 
equations. 

The code is run on a vector computer (CRAY l/SlOOO). The efficiency of the 
method has been improved in terms of computing time by ‘vectorizing ’ the highly 
serial algorithms (FFT and Thomas). Details are given in previous papers by Smutek 
et al. (1983, 1985). 

The mesh sizes used were from 11 x 16 x 17 up to 9 x 32 x 129 for the horizontal 
cylinder with A = 10. The accuracy of the solutions was checked by evaluating the 
divergence of U which is not set identically to zero with the vorticity-velocity 
formulation. 

4. Convection regimes 
The basic motion in long differentially heated cylinders corresponds to two 

horizontal counterflows moving from the hot wall, above, and from the cold wall, 
below (see Bejan & Tien 1978). A similar basic flow also exists in horizontal shallow 
rectangular boxes, studied by Cormack, Leal & Imberger (1974a), Cormack, Leal & 
Seinfeld (19743) and Imberger (1974), which exhibit the following main features: 

A t  small Ra, the horizontal temperature gradient is constant in the core and the 
main buoyancy forces are located there (core-driven regime). The role of the vertical 
endwalls is only to turn the flow, which is parallel to the axis everywhere else. 

A t  larger Ra, the main buoyancy forces are located in the end regions where both 
thermal and dynamical boundary layers develop (boundary -1ayer-driven regime), 
while the core plays only a passive role. 

In cylinders, this basic flow was studied with an asymptotic theory by Bejan & 
Tien ( 1978) who develop dimensionless velocity variables in a power-series expansion 
of Ra k, as follows: 

(u, v, w) = (u, v, wII Ra k,  + (u, v, w h I  (Ra k J 2 +  (u, 0, whII (Ra k J 3  + . . . , (6) 

where k, is the horizontal temperature gradient in the core defined as k ,  = -0.5 ae/az. 
At low Ra, (core-driven regime), k ,  = R / L  and the first-order terms yield S-shaped 
profiles for the axial velocity which have been shown to predict accurately the flow 
in the middle part ( z  x +A) of the symmetry plane of the cylinder (Bontoux et al. 1986) : 

Weak three-dimensional flow structures are superimposed onto the main counterflows 
in the core as revealed by the second-order terms of the expansion (Bejan & Tien 1978; 
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and Shih 1981) and confirmed by the two-dimensional computations in the median 
( z  = +A) cross-section (Kimura & Bejan 1980a) : 

(2rs - 15r4 + 24r2 - 11) r 
184 320 

cos 24, UII = - 

(-  8ra +45r4 -48r2 + 11) r 
184 320 

sin 24, WII = 

WII = 0. 

The third-order terms of such an expansion would give a representation of the shift 
of the maximal velocity toward the wall (Schiroky & Rosenberger 1984). But this 
improvement is limited to a small range of Ra very close to the beginning of the 
boundary-layer-driven regime. 

For an A = 10 cylinder, experiments by Schiroky & Rosenberger (1984) based on 
laser-Doppler anemometry exhibited strong three-dimensional flow structures in the 
vicinity of the hot and cold walls for Ru 2 3580. In  these experiments, boundary 
layers are shown to develop simultaneously along the end- and sidewalls. 

4.1. Convergence and accuracy 
The convergence is accelerated by taking an initial condition obtained from the 
first-order solution (7) and the matching function 

(9) 

The convergence of the solution toward a steady state is shown in figure 2 for 
different Ra values at A = 10 with a 9 x 32 x 33 mesh. This figure shows the axial 
velocity w at the point (4,4,4) close to the hot wall. For Ra = 660, convergence is 
obtained after only 30 iterations. A t  Ra = 3580, it is reached after 60 iterations from 
the Ra = 660 solution. For this Ra, a direct computation from (7) and (9) as initial 
conditions converges in the same number of iterations. However after the transition 
to the boundary-layer regime (Ra = 18720), an adapted value of k, (k, < 0.10) is 
necessary for convergence when (7) and (9) are used. On figure 2 the initial condition 
for this case corresponds to the Ra = 8860 converged solution. The time-step size is 
defined by At = 0.5 min (Ar2, Az2) and is used with optimal values for the false 
transient factors, which vary strongly with Ru. They have been selected such that 
a6 x lOa,, with a6 ranging from 20 to 1 when Ra is increased from 660 to 18720. 

With the vorticity-velocity formulation the discrete continuity equation is not 
implicitly satisfied by the computed solution, as with the vorticity-vector potential 
formulation. The difference to zero of the discretized divergence of U can be used to 
control the accuracy of the solution. The values of 4 div U/(1/3 Ru) calculated for 
different z at r x 0.53 in the plane 4 = 0 are plotted in figure 3 for Ra = 3580. They are 
close to zero for most of the values of z except near the two endwalls where they 
present two maxima. Figure 3 also shows that these maxima diminish rapidly when 
the mesh size is reduced. 

In  the core the accuracy is also controlled through the mesh dependency of some 
characteristic solutions. Comparisons are also made with available experiments. 
Fig. 4 represents the axial v&,%y profiles in the vertical symmetry plane with 
11 x 16 x 17 and 9 x 32 x 33 mesh points. These two kinds of solution are very close 
and agree with the experimental values given by Schiroky & Rosenberger (1984) at 
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FIGURE 2. Convergence of w-solution versus iterations number ni in a horizontal cylinder (y  = 90') ; 
A = 10, Pr = 0.73. Starting conditions: 0, relations (7) and (9); 0,  converged solution at lower 
Ra . 

4 div U 
Ra .\/3 

0.5 1 

t 

Ra = 660, 3580 and 18720. Additional computations carried out with more than 33 
points along the axis have shown that the numerical solution is not very substantially 
modified in the core. 

A larger influence of the mesh size is observed near the endwalls, where the 
boundary layers develop (figures 5 a ,  b). To be well represented the u-solution needs 
65  points along the axis when 3850 < R a  < 18720. The 9 x 32 x 129 solution makes 
no significant differences to the values of u. It is to be noted that the computation 
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FIQURE 4. Axial velocity profiles versus radius. Effect of the mesh size and comparisons with 
the experiments of Schiroky & Rosenberger (1984); A = 10, Pr = 0.73. 

underpredicts the experimental data (which are given only for the cold endwalls) by 
about 17-20 % . Although the influence of smaller radial step sizes was not explicitly 
checked in that case, we think that this difference between numerical and experimental 
results is more probably connected to an effect of variation of density and viscosity 
(neglected in the present model), and to a possible defect of insulation at  the endwalls 
(in the experiments) as suggested by Leonardi (1984). 

4.2. Regimes and transition (symmetry-plane solution) 
The core-driven regime is characterized by flow parallelism in the core and indepen- 
dence in the z-direction. The values of the axial velocity are plotted in figure 6 for 
A = 10 along lines parallel to the axis at r x 0.53 and 4 = 180' for Ra < 18720. The 
independence from z is verified over more than 50 % of the length up to Ra = 1830. 
It decreases to about 30% at Ra = 3580. Above Ra = 6000, the dependency on z 
becomes important. This also gives a limit to Ra beyond which the asymptotic theory 
cannot be used. 

The values of the maximum for the axial and crossflow velocities in the core may 
be derived from relations (7) and (8) as follows: 

Ra k,  
121/3' 

wgax =- 

(u, TI)&, x 1.65 x 10-S(Ra kl)2. (11) 

They are shown for A = 10(kl  = 0.1) on figure 7 together with the present results 
and with the experimental data (limited to w) given by Schiroky & Rosenberger 
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FIGURE 5. Vertical velocity profiles along the axis. Effect of the mesh size at A = 10, Pr = 0.73 
with (a) Ra= 3580; ( b )  8860. Mesh: A, 9 x 3 2 ~ 3 3 ;  x ,  9 ~ 3 2 x 6 5 ;  0,  9 ~ 3 2 x 1 2 9 ;  -0-, 
comparisons with the experiments of Schiroky & Rosenberger (1984). 
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(1984). The numerical and experimental values of wmax in the median cross-section 
move away from (10) with a Rai trend when Ra Y 6000, but they are in perfect 
agreement with the analytical solution for lower Ra. The numerical values of umax 
are in good agreement with the theory for small Ra and move more gradually away 
from (11) after Ra x 1000. After a certain value Ra x 3000, for which u,,, is about 
one tenth of w,,,, they seem to vary as 

An extreme upper limit for the parallel flow (and the core-driven regime) could be 
deduced from (10) and (11) as the intersection of the two theoretical curves, which 
could correspond to w = u :  

Rac k ,  x 2916, 

that is Ra, x 29160 for A = 10. 

ii 
I I I I I I I I I 1 
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FIGURE 6. Variation of w at constant r,  along the axis at A = 10, PT = 0.73 and for various Ra. 
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FIGURE 7. Variation of the maxima of w and (u,v) with Ra at A = 10, Pr = 0.73. Comparisons 
between experiments (A, w) (Schiroky & Rosenberger 1984), computations (0, (u, v)); (0, w ) ,  and 
theory (equations (11) for (u,v) and (10) for w) (Bejan & Tien 1978). 

8 PLY 169 
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8860 

3580 

FIQURE 8. Velocity field in the vertical symmetry plane at Ra = 8860, 3580, and 1830, with 
A = 10, Pr = 0.73. 

A more realistic value of Ra,, as the limit of quasi-parallel flow, could be characterized 
by U & , / W ~ ~ ~  = 10 yo. Then 

Ra, x2916 for A = 10. (12) 

Other critical Rayleigh numbers could be based on a 10 yo deviation of w,,, from 
(lo),  as in a previous paper by Bontoux et al. (1986), or of u,,, from (1  1). They could 
give, respectively, 

Ra, x 5920 for I w , ~ , - w $ ~ , ~  x 0.1 w&,, 

Ra, x 1830 for 1u, , , -~~~~l  x 0.1 ukax 
The u-component appears to deviate sooner from asymptotical law and the criterion 
(12) seems to give a good compromise in characterizing the end of the conducting 
regime for long cylinders as the limit of quasi-parallel flow. 

The characteristic flow patterns in the vertical symmetry plane are shown in figures 
8 and 9 for Ra ranging from 1830 to 18720 (including the regime of transition). These 
figures exhibit the main features of the flow in this plane: flow parallelism up to 
Ra = 1830 and flow inclination above, with the onset of secondary vortices in the 
end regions at Ra = 8860. These secondary vortices have been previously observed 
in experiments (Ostrach, Loka & Kumar 1980) and by numerical simulations in 
two-dimensional cavities (Wirtz & Tseng 1980). 

4.3. Three-dimensional flow structure 

4.3.1. The projection of the velocity in the ( r ,  2)-planes is shown at Ra = 18720 in 
figure 9 where $ is varied from 0' to 90". The main feature in the core is the inclination 
of the flow with respect to the axis when $ = 0'. A t  $ = 45O, the flow is roughly 
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90' 

FIQURE 9. Velocity field in the q5 = Oo, 45" and 90' planes at Ra = 18720, Pr = 0.73 and 
A = 10. 

parallel. Above this value of q5, the flow is organized into a general motion, shown 
for q5 = 90" developing from the sides toward the middle point of the domain and 
into secondary motions located in the vicinity of the endwalls and directed toward 
them, with two rolls on each side. 

4.3.2. In  the horizontal mid-plane, the vertical motion was analysed by Schiroky & 
Rosenberger (1984) from measurements of the vertical velocity which show boundary 
layers development on the end- and sidewalls. The present code has been shown by 
Smutek et al. (1985) to predict qualitatively this three-dimensional pattern, even with 
a coarse mesh, such as 9 x 32 x 33. The radial variation of the vertical velocity w given 
here with a finer mesh (9 x 32 x 65 and 129), at z corresponding to the maximum of 
v is shown in figure 10 for increasing Ra. When Ra < 660, the largest v is located in 
the symmetry plane. Above Ra = 660, two maxima of w are exhibited on each side 
of the symmetry plane, as in the experiments mentioned before. These maxima 
approach the sidewall when Ra is increased. A t  Ra = 18720 a zone of constant 
vertical velocity develops in the centre. The value of v in this internal region is less 
than about 20 % of the maxima of v which are located at r x 0.75. 

4.3.3. The cross-flow structure superimposed onto the main counterflows in the entire 
cavity is demonstrated in figure 11 at various vertical cross-sections (r,  q5)  between 
the hot wall and the centre. At the different Ra, four secondary eddies are found in 
the four quadrants of the median plane ( z  = &A), as predicted by the asymptotic 
theory ( 8 )  given by Bejan & Tien (1978). But these eddies expand differently along 
z when the endwalls are approached. Some differences occur at higher Ra due to the 
onset of the vortices in the vertical symmetry plane as mentioned before. The scales 
of axial and crossflow velocities defined in figure 7 indicate that a particle would turn 

8-2 
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1 0.5 0 0.5 r 1  

FIGURE 10. Vertical velocity profile v versus radius in the horizontal plane at z corresponding 
to the maximum of v ;  A = 10, Pr = 0.73. 

z = 0.312 0.625 0.937 1.250 1.562 1.875 2.50 5.00 

Ra = 18720 

Ra = 8860 

Ra = 3580 

FIQURE 11. Flow structures in the ( r ,  $)-plane at various vertical cross-sections between the hot 
wall ( z  = 0) and the centre (z  = 5) for A = 10; Pr = 0.73. 



Buoyancy-driven Jlows in cylindrical cavities. Part 1 223 

FIQURE 12. Three-dimensional velocity field (magnitude larger than 20% of the maximum) at 
various azimuths: (a) q5 = 45" and 135" and (b )  $ = 90" and 180"; Ra = 18720, A = 10. 

through about 90' on the conical sheet between the hot and the cold walls at 
Ra = 18720. 

4.3.4. In  order to improve the flow depiction given by the plane projection of the 
velocity in the previous figures, the fully three-dimensional velocity pattern at 
Rcc = 18720 is given in figure 12, at four regularly spaced azimuths: q5 = 45O and 
q5 = 135" (figure 12a) and 4 = 90" and 4 = 180" (figure 12b). The velocity vectors are 
plotted only when they exceed 20 Yo of their maximum. In the regions hidden by the 
lateral (shaded) surfaces, they are only plotted at  the last row (i = 8) in the r-direction, 
for given azimuths. The circular section at the far left of the cylinder on figure 12, 
corresponds to the first internal cross-section plane (k = 64) at a distance z = 0.156 
from the cold endwall. 

The analysis of the velocity pattern confirms the occurrence of low velocities (less 
than 20 % of the maximum) everywhere in the horizontal mid-plane, except close to 
the endwalls. A secondary vortex sets in on the plane $ = 180' near the cold wall, 
inside the region without arrows (figure 12b). A symmetric one exists at g5 = 0" near 
the hot wall. The influence zone of this last vortex is shown in figure 12a at q5 = 45". 
This suggests the schematic representation of these vortices as ' crescent-shaped ' 
regions, shown in figure 13. 

Figure 12 (a) also reveals a strong deflection of the flow away from the symmetry 
plane in a 'peripheric' layer flowing near the cylindrical wall. In  the internal region 
the flow is generally inclined with respect to the axis as in the symmetry plane 
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FIGURE 13. Schematic flow pattern in a horizontal cylinder at A = 10 and Ru = 18720. 
Primary and secondary flows. 

FIGURE 14. Three-dimensional velocity field (magnitude larger than 20 yo of the maximum) over 
a distance of &A from the hot wall; Ru = 18720, A = 10. 

($ = 180'). In  the peripheric layer the motion is driven from the flow generated along 
the vertical endwalls. In  the upper part of the cylinder (above the horizontal mid-plane) 
the fluid begins to flow downward quite a way before reaching the cold end. 
Symmetrically, i t  is driven upward in the lower part of the cylinder. 

The complete flow pattern, which admits symmetries with respect to the centre 
and to g5 = O', is schematically represented in figure 13 a t  Ra = 18720. The main flow 
seems to circulate in a 'tube ' in the symmetry plane which is inclined with respect 
to the axis in the core of the cylinder. The deflection of the motion (crossflow effect) 
at the periphery of the 'tube ' is also schematically represented by four arrows in 
figure 13. 

The U-turning of the flow close to the hot end is emphasized in figure 14, over a 
distance of 10 yo of L,  through velocity-vector fields plotted at several abscissae for 
regularly spaced azimuths. 

In the lower part of the cylinder, the U-turning of the flow occurs at $ = 0' over 
a distance 0.3 0.5, close to the hot endwall. Outside the symmetry plane, it 
arises much further away from this endwall (at g5 = 90" and $ = 270" the magnitude 
of the vertical-velocity component reaches about 50% of the maximum). This 
confirms the limit of relevance of the two-dimensional models (symmetry-plane 
approximation) for high values of Ra, as previously discussed by Bontoux et al. (1986). 

z 
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In the upper part of the cylinder, the reverse flow is concentrated in the sector 
135’ 2 4 225’, where it develops over the entire radii (including r = 0) for 
z F 0.78. The comparison of the arrows a t  4 = 135’ and 225’ suggests a 
tendency of the flow to converge towards the symmetry plane. 

5. Conclusion 
The fully three-dimensional buoyancy-driven gaseous flow (Pr = 0.73) in circular 

cylinders with differentially heated endwalls has been analysed with a finite-difference 
method which is basically a ‘vectorized’ version of the CYL3D code of Leong & de 
Vahl Davis (1979). Special attention has been devoted to long horizontal cylinders 
(A = L / R  = 10). 

For temperature gradients or Rayleigh numbers relevant for crystal growing by 
vapour transport in closed ampoules and including transition from the core-driven 
regime (low Ra) to the boundary-layer regime (higher Ra), detailed velocity fields 
(u, w-components) have been given in the vertical symmetry plane. In  the core-driven 
regime, the flow is parallel to  the axis. For higher Ra, an inclination of the flow with 
respect to the axis, characterized by the ratio u/w, appears and increases with Ra. 
A criterion for the upper limit of the core-driven regime is proposed from relevant 
analytical core solutions for u- and w-components. The criterion based on 
uga,/wga, = 10 % gives Ra, x 2900 for A = 10. 

The flow field has also been identified near the endwalls (the cold endwall 
corresponding to the growing interface). The vertical velocity exhibits two maxima 
outside the symmetry plane for Ra > 1830, as in the experiments carried out by 
Schiroky & Rosenbeger (1984). For Ra = 18720 the plotting of the three-dimensional 
velocity-vector field shows that the flow makes a U-turn close to the endwall at 4 = 0’. 
This turning occurs much earlier outside the symmetry plane, which confirms that 
a two-dimensional model (based on a symmetry-plane approximation) would not be 
very pertinent for Ra close to, or higher than, 18720. After the U-turn the flow comes 
back and is mostly concentrated in the sector 135’ 2 4 2 225’. 

Finally, the global flow structure has been analysed. A detailed analysis of the 
velocity components in vertical transverse cross-sections (at constant x or k) for 
several positions along the axis at Ra = 3580, 8860 and 18720, shows an helicoidal 
motion rolling slightly on four conical sheets. A more informative depiction of such 
a flow structure has been given at Ra = 18720, through the three-dimensional 
velocity-vector field. A main flow driven from the endwall circulates in a ‘tube’, of 
variable section, surrounding a dead flow region limited by two ‘crescent-shaped’ 
vortices in the end region. This main flow starts from the hot wall in the upper part 
of the cylinder, turns down close to the cold wall and goes back towards the hot wall 
in the lower part of the cylinder. The flow at the periphery of the tube spreads into 
layers (crossflow) symmetric with respect to 4 = 180°, when reaching the cold wall. 
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